
ORNL/TM-2021/2388

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

Oak Ridge National Laboratory

Zheming Jin

December 2021

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

 Website www.osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

 Office of Scientific and Technical Information
 PO Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Website https://www.osti.gov/

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

http://www.osti.gov/
http://classic.ntis.gov/
https://www.osti.gov/

ORNL/TM-2021/2338

Computer Science and Mathematics Division

THE RODINIA BENCHMARKS IN SYCL

Zheming Jin

December 2021

Prepared by

OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283

managed by

UT-BATTELLE LLC

for the

US DEPARTMENT OF ENERGY

under contract DE-AC05-00OR22725

1 The Rodinia benchmarks in SYCL are available at https://github.com/zjin-lcf/HeCBench

The Rodinia Benchmarks in SYCL

 Abstract—The Rodinia Benchmark Suite in SYCL was first

published as a technical report at Argonne National

Laboratory in June 2020. While porting more programs to

SYCL, the Rodinia benchmark suites were merged into the

heterogenous computing benchmarks (HeCBench). Since then,

the source codes and scripts of the benchmark suite have been

updated to fix compile- and run-time issues that users

encountered. With the recent SYCL compilers from Codeplay

and Intel, this report presents the experimental results of

evaluating these benchmarks on the Intel CPU and GPU

devices.

I. INTRODUCTION

As opposed to the Open Computing Language (OpenCL)

programming model in which host and device codes are
generally written in two programming languages [1], SYCL
can combine host and device codes for an application in a
type-safe way to improve development productivity and
performance portability [2].

Rodinia is a widely used benchmark suite for
heterogeneous computing [3,4,5,6,7,8,9,10,11,12]. Hence,
the OpenCL implementations of the benchmark suite were
ported to SYCL manually. The SYCL benchmark suite is an
open-source project1 for tracking the development of the
mainstream SYCL compilers [13,14,15], and for developers
and researchers interested in programming productivity,
performance analysis, and portability across different
computing platforms [16,17,18,19,20,21,22,23,24,25,26,27].

The remainder of the report is organized as follows.
Section II introduces the SYCL programming model, shows
the major differences between an OpenCL program and a
SYCL program, and gives a summary of the benchmark
suite. In Section III, we describe our SYCL implementations
in more details. Section IV evaluates the SYCL benchmarks
on computing platforms with Intel central processing units
(CPUs) and graphics processing units (GPUs). Section V

concludes the report.

II. BACKGROUND

A. SYCL

C++ AMP, CUDA, HIP, Thrust are representative single-
source C/C++ programming models for accelerators [28].
Such languages can be type-checked as everything sits in a
single source file. They facilitate offline compilation so that
the binary can be checked at compile time. A SYCL
program, based on a single-source C++ model as shown in
Figure 1, can be compiled for a host while kernel(s) are
extracted from the source and compiled for a device. A
SYCL device compiler parses a SYCL application and
generates intermediate representations (IRs). A standard host
compiler parses the same application to generate native host
code. The SYCL runtime will load IRs at runtime, enabling
other compilers to parse it into native device code. Hence,
people can continue to use existing toolchains for a host
platform and choose preferred device compilers for a target
platform.

The design of SYCL allows for the combination of the
performance and portability features of OpenCL and the
flexibility of using high-level C++ abstractions. Most of the
abstraction features of C++, such as templates, classes, and
operator overloading, are available for a kernel function in
SYCL. A SYCL application is logically structured in three
scopes: the kernel scope, the application scope, and the
command-group scope. The kernel scope specifies a single-
kernel function that will be executed on a device after
compilation. The command-group scope specifies a unit of
work that will comprise of a kernel function and buffer
accessors. The application scope specifies all other codes
outside of a command-group scope. A SYCL kernel function
may be defined by the body of a lambda function, by a
function object or by the binary generated from an OpenCL
kernel string. Although an OpenCL kernel is interoperable in
the SYCL programming model, we use a lambda function
for each kernel in a benchmark.

Figure 1. SYCL is a single-source programming model

TABLE I. MAPPING FROM OPENCL TO SYCL

Step OpenCL program SYCL program

1 Platform query

Device selector class 2 Device query of a platform

3 Create context for devices

4 Create command queue for context Queue class

5 Create memory objects Buffer class

6 Create program object

Lambda expressions
7 Build a program

8 Create kernel(s)

9 Set kernel arguments

10
Enqueue a kernel object for execution

Submit a SYCL kernel

to a queue

11 Transfer data from device to host Implicit via accessors

12 Event handling Event class

13 Release resources Implicit via destructors

https://github.com/zjin-lcf/HeCBench

Unified shared memory (USM) and buffers are two
major ways to manage memory data in SYCL. USM is
pointer-based, which is familiar to C/C++ programmers. The
unified address space in USM encompasses hosts and one or
more devices, reducing the barrier to porting existing C++
programs. Buffers, which are represented by the buffer
template class, provides an abstract view of memory, but
they are not directly accessed by a program and are instead
used through accessor objects. For the Rodinia benchmarks
in SYCL, the choice of memory management is SYCL
buffers.

Table I lists the steps of writing an OpenCL application
and their corresponding steps in SYCL. The first three steps
in OpenCL are reduced to the instantiation of a device
selector class in SYCL. A selector searches a device of a
user’s provided preference (e.g., GPU) at runtime. The
SYCL queue class encapsulates a queue for scheduling
kernels on a device. A kernel function in SYCL, which can
be invoked as a lambda function, is grouped into a command
group object, and then it is submitted to execution via
command queue. Hence, steps 6 to 10 in OpenCL are
mapped to the definition of a lambda expression and
submission of its command group to a SYCL queue. Data
transfers between a host and a device can be implicitly
realized by accessor objects, and the event handling can be
handled by SYCL event class. Releasing the allocated
sources of queue, program, kernel, and memory objects in
SYCL is handled by the SYCL runtime which implicitly
calls destructors inside scopes. Compared to the number of
OpenCL programming steps, the SYCL programming model
cuts the number of programming steps by half with higher
abstractions, reducing a developer’s burden of managing
OpenCL device, program, kernel, and memory objects.

B. Rodinia

Rodinia is a widely used open-source benchmark suite

for heterogeneous computing. Table II lists the name in
alphabetical order of each benchmark, its application
domain, the number of kernels in the benchmark, and the
number of kernel arguments for each kernel. Among the 21
benchmarks, the maximum number of kernels are 7 for the
“hybridsort” benchmark, and the maximum number of kernel
arguments are 34 for the “heartwall” benchmark. The large
dataset, which are needed for some benchmarks, are not
included in the GitHub repository. They can be downloaded
at http://lava.cs.virginia.edu/Rodinia/download.htm.

III. IMPLEMENTATIONS

In consideration of the rapidly evolving SYCL
programming model [29], we would like to summarize the
SYCL features utilized in the benchmarks.

A. Buffer Construction

In SYCL, a host application uses instances of the SYCL
buffer class to allocate memory in global, local, and
constant address spaces. A SYCL buffer can handle both
storage and ownership of data. In addition, a buffer is
destroyed when it goes out of scope.

Table III lists the ways a buffer can be constructed and
its initial values after construction. The destruction behavior
indicates if the SYCL runtime will block until all work in
queues on the buffer have completed. For the benchmark
suite, we use the first two methods for constructing buffers.

B. Buffer Access Mode

SYCL accessors allow a user to specify the types (e.g.,
global memory or constant memory) of data access, and the
SYCL implementation ensures that the data is accessed
appropriately. A device accessor, which is the default access
type, allows a kernel to access data on a device. In contrast, a
host accessor gives access to data on a host. A device
accessor can only be constructed within command groups
whereas a host accessor can be created outside command
groups. Constructing a host accessor is blocking by waiting
for all previous operations on the underlying buffer to
complete. When accessing the contents of a device buffer
before the buffer is destroyed in a host program, we could
use a host accessor to access the contents managed by the
device buffer.

An accessor must be specified with an access mode
shown in Table IV. Discarding write indicates that previous
contents of a device buffer is not preserved, which implies

TABLE II. SUMMARY OF THE RODINIA BENCHMARKS

Benchmark

name

Application

domain

Kernel

counts

Argument counts

for each kernel

b+tree Search 2 10, 11

backprop Pattern recognition 2 6, 8

bfs Graph algorithm 1 2

cfd Fluid dynamics 5 3, 3, 4, 5, 10

dwt2d Video compression 3 3, 5, 7

gaussian Linear algebra 2 5, 5

heartwall Medical imaging 1 34

hotspot Physics simulation 1 13

hotspot3D Physics simulation 1 14

hybridsort Sorting algorithm 7 3, 3, 5, 5, 5, 5, 6

kmeans Data mining 2 4, 8

lavaMD Chemistry 1 6

leukocyte Medical imaging 3 7, 10, 10

lud Linear algebra 3 4, 5, 6

myocyte Biological simulation 1 5

nn Data mining 1 5

nw Bioinformatics 2 12, 12

particlefilter Medical imaging 4 2, 6, 8, 20

pathfinder Grid traversal 1 12

srad Image processing 6 2, 2, 3, 4, 14, 14

streamcluster Data mining 2 3, 10

TABLE III. SUMMARY OF SYCL BUFFER MANAGEMENT

Construction

method

Initial buffer content

after construction

Destruction

behavior

Buffer size Unspecified Non-blocking

Associated host memory Contents of host memory Blocking

Unique pointer to host data Contents of host data Blocking

Shared pointer to host data Contents of host data Blocking

A pair of iterator values
Data from the range

defined by the iterator pair

Non-blocking

Container Contents of the container Blocking (1)

(1) Please see the buffer synchronization rules in the SYCL specification for

more details

that it is not necessary to copy data from a host to a device
before the buffer is accessed. It is important to specify the
access mode correctly; otherwise, SYCL compilers will
report an error when a kernel function tries to write to a read-
only buffer. On the other hand, a read-only accessor to a
buffer disables data copy from a device to a host when the
buffer is destroyed.

C. Data Movement between Host and Device

For the OpenCL implementations of the benchmark suite,
data transfers between a host and a device are explicitly
made with the OpenCL built-in functions
“clEnqueueReadBuffer()” and “clEnqueueWriteBuffer()”. In
the SYCL implementations, we rely on implicit and/or
explicit data transfers. When a buffer is constructed with
associated host memory as shown in Table III, the SYCL
runtime will copy data from a host to a device before a
kernel is launched, and optionally copy data back from a
device to a host before the buffer is destroyed. Without
explicit data copy specified in a SYCL program, a SYCL
compiler may generate OpenCL built-in functions
“clEnqueueMapBuffer()” and “clEnqueueUnmapMemObject()”
for mapping data between a host and a device. On the other
hand, data copy from a device to a host can be disabled
explicitly using the method “set_final_data(nullptr)” of the
SYCL buffer class.

For explicit data transfers, we use the copy method of the
command group handler. An explicit copy operation requires
the specifications of a source and a destination. When an
accessor is the source of the operation, the destination can be
a host pointer or another accessor. When an accessor is the
destination of the explicit copy operation, the source can be a
host pointer or another accessor.

D. Kernel Execution Order

In OpenCL, a command queue is required to transfer data
between a host and a device, and to ensure different kernels
execute in the correct order. In contrast, SYCL provides an
abstraction that only requires users to specify which data are
needed to execute a kernel. By specifying access modes and
types of memory for each kernel, a directed acyclic
dependency graph for different kernels is constructed at
runtime based on the relative order of command-groups
submissions to a queue. The runtime will guarantee that
kernels are executed in an order that guarantees correctness.
By default, SYCL queues execute kernel functions in an out-
of-order fashion. An in-order queue, which is an extension to
the default queue property [30], is not used in our
implementations.

E. Kernel Execution Model

Conceptually, the SYCL kernel execution model is
equivalent to the OpenCL kernel execution model. SYCL
supports an N-dimensional (N ≤ 3) index space, and the
space is represented via the “nd_range<N>” class. Each
work-item in the space can be identified by the type
“nd_item<N>”. The type encapsulates a global identifier
(ID), a local ID, a work-group ID, synchronization
operations, etc.

A SYCL runtime creates a SYCL handler object to
define and invoke a SYCL kernel function in a command
group. A kernel can be invoked as a single task, a basic data-
parallel kernel, an OpenCL-style kernel, or a hierarchical
parallel kernel. In our experiment, we invoke a variant of the
“parallel_for” member function that enables low-level
functionality of work-items and work-groups for a data-
parallel kernel. The variation allows us to specify both global
and local ranges, perform the synchronization of work-items
in each cooperating work-group, and create accessors to
local memory. These functions are helpful for the smooth
migration of an OpenCL kernel to a SYCL kernel.

IV. EXPERIMENT

A. Setup

The benchmarks are compiled with the two commercial
SYCL compilers, the Intel DPC++ compiler 2021.4.0 and
the Community Edition of the Codeplay ComputeCpp
compiler 2.7.0. Two computing servers are used for
evaluating the benchmarks. The first server contains an Intel
Xeon E-2176G CPU running at 3.7 GHz. The CPU has six
cores, and each core supports two threads. The integrated

TABLE IV. SYCL BUFFER ACCESS MODES

Access mode Description

Read Read-only access to the content of a buffer

Write Write-only access to the content of a buffer

Read/Write Read and write access to a buffer

Discard Write
Write-only access to the content of a buffer. Discard any

previous contents of the data the accessor refers to

Discard

Read/Write

Read and write access to the content of a buffer. Discard

any previous contents of the data the accessor refers to

Atomic Atomic access to the content of a buffer

-

TABLE V. PROBLEM SIZE FOR EACH BENCHMARK IN RODINIA

Benchmark Problem size

b+tree 1 million keys, 10000 bundled queries,

a range search of 6000 bundled queries with

the range of each search 3000

backprop 65536 input nodes

bfs 1 million vertices

cfd 97K elements

dwt2d 1024×1024 image, forward 5/3 transform

gaussian 4096×4096 matrix

heartwall 104 frames

hotspot 512×512 data points

hotspot3D 512×512 data points

hybridsort 50000000 elements

kmeans 494020 points, 34 features

lavaMD 1000 boxes

leukocyte 10 frames

lud 8192×8192 data points

myocyte 100 timesteps

nn 5 nearest neighbors

nw 16384×16384 data points

particlefilter 400000 points

pathfinder 100000×100 2D grid

srad 512×512 data points

streamcluster 65536 points 256 dimensions

GPU (UHD Graphics 630) is Coffee Lake GT2, Generation
9.5. The second server has an Intel Xeon E3-1585 v5 CPU
running at 3.5 GHz. The CPU has four cores, and each core
supports two threads. The integrated GPU (Iris Pro Graphics
580) is Skylake GT4e, Generation 9.0. It contains 72
execution units.

For the GPU compute runtime, the device version is
OpenCL 3.0 NEO on both platforms. The driver versions are
21.33.20678 and 21.21.0 on the two platforms, respectively.
For the CPU runtime, the device version is OpenCL 3.0, and
the driver version is 2021.12.9.0.24_005321 on both
platforms. The maximum work-group size is 256 and 8192
on a GPU and a CPU, respectively. The operating systems
are Ubuntu 20.04 and OpenSUSE 15.3, respectively. The
compiler options are “-O3 -no-serial-memop -sycl-driver”
for the ComputeCpp compiler, and “-O3” for the Intel
DPC++ compiler.

The problem sizes for the benchmarks are listed in Table
V. For each benchmark, we use the same work-group size
for the CPU and GPU unless different work-group sizes are
specified in the benchmark. While adjusting the problem size
and turning the work-group size may further improve the raw
performance of SYCL kernels on a target platform, we are
more concerned with developing SYCL programs to support
the development of the SYCL compilers.

B. Experimental Results

We execute each benchmark four times and measure the
device timing reported by the Intel OpenCL profiler [31].
The device timing is the total elapsed time of executing
kernel(s) on a device specified by the SYCL’s device
selector. The host timing, which is the total elapsed time of
executing OpenCL runtime functions on a CPU host, is not
considered for performance evaluation. We find that the host
timing of a benchmark compiled with the ComputeCpp
compiler does not necessarily include the device timing,
whereas device timing is part of host timing for a benchmark
compiled with the DPC++ compiler. The discrepancy of host
timing between the two compilers is related to whether
certain OpenCL runtime functions invoked on a host wait for
the completion of kernel execution on a device.

Tables VI and VII list the CPU and GPU device
execution time in seconds of the benchmarks on the two
computing platforms, respectively. “DPC++” and “CPC++”
refer to the Intel DPC++ compiler and the Codeplay
ComputeCpp compiler, respectively. The timing results of
the “hybridsort” benchmark are not available (N/A) except
the GPU timing of the benchmark compiled with DPC++.

Figures 2 and 3 compare the CPU and GPU device
timing for each benchmark using the two SYCL compilers.

TABLE VI. CPU and GPU device execution time on the Intel Xeon

E-2176G and UHD Graphics 630, respectively

Time

(seconds)

DPC++

GPU

device

CPC++

GPU

device

DPC++

CPU

device

CPC++

CPU

device

b+tree 0.0104 0.0077 0.006 0.012

backprop 0.0045 0.004 0.002 0.003

bfs 0.0733 0.04 0.0251 0.023

cfd 3.0 4.0 4.1 11.2

dwt2d 0.044 0.028 0.009 0.015

gaussian 69.1 68.4 15.7 30.9

heartwall 15.6 14.8 12.4 23

hotspot 0.1 0.044 0.054 0.11

hotspot3D 4.1 4.2 5.8 6.5

hybridsort 1.24 N/A N/A N/A

kmeans 120.5 115.8 78.9 177.2

lavaMD 1.3 1.5 4.86 5.36

leukocyte 4.86 5.6 3.9 21.7

lud 10.7 11.36 5.5 13.8

myocyte 0.56 1.47 0.27 0.26

nn 0.15 0.248 0.676 0.83

nw 0.71 0.84 0.58 0.97

particlefilter 49.5 45.5 25.3 27.4

pathfinder 3.36 2.94 28.9 21.4

srad 2.1 1.2 1.1 2.2

streamcluster 7.1 9.5 6.1 12.4

TABLE VII. CPU and GPU device execution time on the Intel Xeon

E3-1585 v5 and Iris Pro Graphics 750, respectively

Time

(seconds)

DPC++

GPU

device

CPC++

GPU

device

DPC++

CPU

device

CPC++

CPU

device

b+tree 0.0014 0.0029 0.009 0.017

backprop 0.00089 0.001 0.0024 0.004

bfs 0.0167 0.018 0.034 0.027

cfd 2.02 1.98 5.1 17.7

dwt2d 0.0069 0.006 0.011 0.019

gaussian 63.6 53.6 20.5 52.3

heartwall 3.48 3.46 18.8 36.3

hotspot 0.015 0.016 0.058 0.175

hotspot3D 1.98 1.93 6.18 10

hybridsort 0.74 N/A N/A N/A

kmeans 69.4 69.7 124.3 280.7

lavaMD 0.44 0.53 7.87 8.75

leukocyte 1.38 1.52 6.08 33.4

lud 4.16 4.35 7.05 22.1

myocyte 0.63 0.76 0.028 0.0282

nn 0.093 0.1 0.31 0.465

nw 0.49 0.6 0.54 1.11

particlefilter 19.6 18.3 0.39 0.44

pathfinder 1.2 1.07 40.1 34.6

srad 0.412 0.395 1.06 3.1

streamcluster 3.21 3.28 6.4 35.5

When the ratio of device timing (CPU or GPU) for a
benchmark is over 1, the device time of the benchmark
compiled with CPC++ is longer than that of the benchmark
compiled with DPC++. Excluding the “hybridsort”
benchmark whose results are mostly not available, there are
20 benchmarks in the suite. The averaged differences of the
GPU device time of the benchmarks compiled with the two
compilers are 5% and 8% on the two computing platforms,
respectively. However, the CPU device time is on average
1.84X and 2.28X longer using CPC++ on the two computing
platforms, respectively. Hence, the performance gaps of the
SYCL benchmarks executing on the CPUs are much more
significant than those on the GPUs.

We try to have a better understanding of the performance
gaps on a CPU by profiling “leukocyte”, “kmeans”,
“gaussian”, “cfd”, “lud”, “hotspot”, and “srad” with the Intel
VTune Profiler 2021.8.0. The device time of each selected
benchmark is at least 2X longer with CPC++ on the two
platforms. The hotspots of the “leukocyte” benchmark are
the spin time incurred by the implementation of the loop
scheduler in the proprietary ComputeCpp library and the
compute time of the math function “atanf” called in the
“IMGVF” kernel. The single-precision floating-pointer
operations in the kernel may be fully packed (512-bit) with
DPC++. Similarly, the hotspots of the “kmeans” benchmark
are the spin time and the minimum distance compute kernel
which performs scalar single-precision floating-point

operations with CPC++. Almost 100% of the single-
precision floating-point operations of the “fan2” kernel in the
“gaussian” benchmark can be packed to 128- or 512-bit
operations with DPC++, but less than 15% of the operations
can be packed to 512 bits with CPC++. For the “cfd” and
“lud” benchmark, the hotspots are the “compute_flux” kernel
and the “internal” kernel, respectively. Both kernels can be
better optimized with DPC++ to achieve higher single-
precision floating-point operations per second. For the
“hotspot” and “srad” benchmarks, the spin time incurred by
the implementation of the loop scheduler in the ComputeCpp
library is significant in the device time on the CPU. The
profiling results indicate that the major causes of the
performance gaps on the CPUs are the percentage of packed
(vectorized) floating-point operations that can be achieved
by the compilers and the efficiency of scheduling a loop
across threads at runtime.

V. SUMMARY

SYCL is becoming a promising programing model for
heterogeneous computing. We apply the SYCL
programming model to the widely used Rodinia benchmark
suite, describe the transformations from the OpenCL
implementations of the benchmarks to the SYCL
implementations, and evaluate the benchmarks with the Intel
DPC++ and Codeplay ComputeCpp compilers on
microprocessors with a CPU and an integrated GPU. The

Figure 2. The ratio of CPU (Intel Xeon E-2176G) and

GPU (UHD Graphics 630) device timing for each

benchmark compiled with the ComputeCpp and DPC++

compilers. When the ratio is over one for a benchmark,

the device time is longer for the benchmark compiled

with the ComputeCpp compiler.

Figure 3. The ratio of CPU (Intel Xeon E3-1585 v5) and

GPU (Iris Pro Graphics 750) device timing for each

benchmark compiled with the ComputeCpp and DPC++

compilers. When the ratio is over one for a benchmark,

the device time is longer for the benchmark compiled

with the ComputeCpp compiler.

publicly available implementations of the benchmark suite in
SYCL are important for the development of the SYCL
compilers and the performance and portability studies for
heterogeneous computing systems.

ACKNOWLEDGMENT

The author would like to acknowledge people at the

Advanced Computing Systems Research section in Oak

Ridge National Laboratory for their generous support. The

author would also like to acknowledge the community for

their active development of SYCL compilers. This research

used resources of the Argonne Leadership Computing

Facility and the Intel DevCloud. This research was

supported by the Exascale Computing Project (17-SC-20-

SC), a collaborative effort of the U.S. Department of Energy

Office of Science and the National Nuclear Security

Administration.

REFERENCES

[1] Stone, J.E., Gohara, D. and Shi, G., 2010. OpenCL: A parallel
programming standard for heterogeneous computing systems.
Computing in science & engineering, 12(3), pp.66-73.

[2] Doumoulakis, A., Keryell, R. and O'Brien, K., 2017, May. SYCL
C++ and OpenCL interoperability experimentation with triSYCL. In
Proceedings of the 5th International Workshop on OpenCL (pp. 1-8).

[3] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H.
and Skadron, K., 2009, October. Rodinia: A benchmark suite for
heterogeneous computing. In 2009 IEEE international symposium on
workload characterization (IISWC) (pp. 44-54). IEEE.

[4] Che, S., Sheaffer, J.W., Boyer, M., Szafaryn, L.G., Wang, L. and
Skadron, K., 2010, December. A characterization of the Rodinia
benchmark suite with comparison to contemporary CMP workloads.
In IEEE International Symposium on Workload Characterization
(IISWC'10) (pp. 1-11). IEEE.

[5] Wen, H. and Zhang, W., 2019, September. Improving Parallelism of
Breadth First Search (BFS) Algorithm for Accelerated Performance
on GPUs. In 2019 IEEE High Performance Extreme Computing
Conference (HPEC) (pp. 1-7). IEEE.

[6] Memeti, S., Li, L., Pllana, S., Kołodziej, J. and Kessler, C., 2017,
July. Benchmarking OpenCL, OpenACC, OpenMP, and CUDA:
programming productivity, performance, and energy consumption. In
Proceedings of the 2017 Workshop on Adaptive Resource
Management and Scheduling for Cloud Computing (pp. 1-6).

[7] Konstantinidis, E. and Cotronis, Y., 2017. A quantitative roofline
model for GPU kernel performance estimation using micro-
benchmarks and hardware metric profiling. Journal of Parallel and
Distributed Computing, 107, pp.37-56.

[8] Che, S. and Skadron, K., 2014. BenchFriend: Correlating the
performance of GPU benchmarks. The International journal of high
performance computing applications, 28(2), pp.238-250.

[9] Zohouri, H.R., Maruyama, N., Smith, A., Matsuda, M. and Matsuoka,
S., 2016, November. Evaluating and optimizing OpenCL kernels for
high performance computing with FPGAs. In SC'16: Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis (pp. 409-420). IEEE.

[10] Landaverde, R., Zhang, T., Coskun, A.K. and Herbordt, M., 2014,
September. An investigation of unified memory access performance
in CUDA. In 2014 IEEE High Performance Extreme Computing
Conference (HPEC) (pp. 1-6). IEEE.

[11] Shen, J., Fang, J., Sips, H. and Varbanescu, A.L., 2012, September.
Performance gaps between OpenMP and OpenCL for multi-core
CPUs. In 2012 41st International Conference on Parallel Processing
Workshops (pp. 116-125). IEEE.

[12] Shen, J., Fang, J., Sips, H. and Varbanescu, A.L., 2013. An
application-centric evaluation of OpenCL on multi-core CPUs.
Parallel Computing, 39(12), pp.834-850.

[13] https://github.com/intel/llvm

[14] https://www.oneapi.com/

[15] https://www.codeplay.com/products/computesuite/computecpp

[16] Deakin, T. and McIntosh-Smith, S., 2020, April. Evaluating the
performance of HPC-style SYCL applications. In Proceedings of the
International Workshop on OpenCL (pp. 1-11).

[17] Aktemur, B., Metzger, M., Saiapova, N. and Strasuns, M., 2020,
April. Debugging SYCL Programs on Heterogeneous Intel®
Architectures. In Proceedings of the International Workshop on
OpenCL (pp. 1-10).

[18] Alpay, A. and Heuveline, V., 2020, April. SYCL beyond OpenCL:
The architecture, current state and future direction of hipSYCL. In
Proceedings of the International Workshop on OpenCL (pp. 1-1).

[19] Jin, Z. and Finkel, H., 2019, December. A Case Study of k-means
Clustering using SYCL. In 2019 IEEE International Conference on
Big Data (Big Data) (pp. 4466-4471). IEEE.

[20] Jin, Z. and Finkel, H., 2019, November. Evaluation of Medical
Imaging Applications using SYCL. In 2019 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM) (pp. 2259-
2264). IEEE.

[21] Jin, Z., 2019. Improving the Performance of Medical Imaging
Applications using SYCL (No. ANL/ALCF-19/4). Argonne National
Lab.(ANL), Argonne, IL (United States).

[22] Joó, B., Kurth, T., Clark, M.A., Kim, J., Trott, C.R., Ibanez, D.,
Sunderland, D. and Deslippe, J., 2019, November. Performance
Portability of a Wilson Dslash Stencil Operator Mini-App Using
Kokkos and SYCL. In 2019 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC) (pp. 14-
25). IEEE.

[23] Deakin, T., McIntosh-Smith, S., Price, J., Poenaru, A., Atkinson, P.,
Popa, C. and Salmon, J., 2019, November. Performance Portability
across Diverse Computer Architectures. In 2019 IEEE/ACM
International Workshop on Performance, Portability and Productivity
in HPC (P3HPC) (pp. 1-13). IEEE.

[24] Thoman, P., Salzmann, P., Cosenza, B. and Fahringer, T., 2019,
August. Celerity: High-Level C++ for Accelerator Clusters. In
European Conference on Parallel Processing (pp. 291-303). Springer,
Cham.

[25] Burke, T.P., 2019. Parallelization of a Proxy Transport App Using
ComputeCPP and SYCL (No. LA-UR-19-25636). Los Alamos
National Lab.(LANL), Los Alamos, NM (United States).

[26] Afzal, A., Schmitt, C., Alhaddad, S., Grynko, Y., Teich, J., Forstner,
J. and Hannig, F., 2018, July. Solving Maxwell's Equations with
Modern C++ and SYCL: A Case Study. In 2018 IEEE 29th
International Conference on Application-specific Systems,
Architectures and Processors (ASAP) (pp. 1-8). IEEE.

[27] Da Silva, H.C., Pisani, F. and Borin, E., 2016, October. A
comparative study of SYCL, OpenCL, and OpenMP. In 2016
International Symposium on Computer Architecture and High
Performance Computing Workshops (SBAC-PADW) (pp. 61-66).
IEEE.

[28] Wong, M., Richards, A., Rovatsou, M. and Reyes, R., 2016.
Khronos’s OpenCL SYCL to support heterogeneous devices for C++.

[29] https://www.khronos.org/sycl/

[30] https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions/USM

[31] https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions/OrderedQu
eue

https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions/USM

